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Abstract
By using the angular oblate spheroidal functions as basis functions a bounded
wavefunction is constructed in the singularities of the Schrödinger equation
of the diamagnetic Coulomb problem with infinite nuclear mass. The
expansion in terms of these functions is a model to resolve singularities
in an eigenvalue problem of non-separable partial differential equations of
non-relativistic quantum mechanics. A comprehensive asymptotic analysis
reveals the complete set of asymptotic solutions, makes possible a uniform
numerical treatment of the bound, autoionizing continuum and continuum
levels, and indicates how to find hitherto unknown low-lying stationary levels.
An example, the splitting of the ground level, has been found numerically by
an iterative shooting method.

PACS numbers: 02.60.Lj, 32.60.+i, 03.65.Ge

1. Introduction

The Schrödinger equation for stationary states of the diamagnetic Coulomb problem with
infinite nuclear mass is[(

p − 1

2c
H × r

)2

− 2Z

r
− 2E

]
�(r, η, ϕ) = 0 (1)

(Ruder et al 1994) where r(r, θ, ϕ) are the spherical coordinates, −1 � η = cos θ � 1,
p = (h̄/i)∇, Z is the nuclear charge, E is the energy eigenvalue. Atomic units (h̄ = 1,me =
1, e = 1) will be used throughout in the paper, ω = e|H|/2mec is the parameter of the problem,
ω = 1 if the homogeneous magnetic field H in z direction is equal to 4.70 × 109 G. The
boundary conditions are the usual ones of non-relativistic quantum mechanics: boundedness
in the whole domain of r, η, φ, quadratic integrability over space for bound levels and over
momentum space for continuum levels. Astrophysical applications and the need to interpret
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laboratory measurements made this elementary problem of non-relativistic quantum mechanics
a theoretical challenge some 20 years ago.

The potential ω2r2(1 − η2) − 2Z/r has two singularities at r = 0 and ∞ if η �= ±1
while on the axis z (i.e. |η| = 1): r and H are parallel and there is a Coulomb singularity
only. The sum of spherically and cylindrically symmetric potentials allows the separation
of ϕ only. Equation (1) is the simplest one among the numerous non-separable quantum-
mechanical eigenvalue equations. The early studies of (1) were summarized by Ruder
et al (1994). The solutions were numerically oriented: variational calculations with more and
more sophisticated trial wavefunctions, expansions in different basis functions using O(104)

elements and diagonalization, or eigenfunction expansion in the spherical basis. Kravchenko,
Liberman and Johansson (1996) gave another expansion in a basis built up directly from the
partial differential equation. In these studies analytical behaviour of the wavefunction was
scarcely apparent in the singularities, as well as an eventual relation of the found numerical
solutions to the whole manifold of the solutions. The overwhelming majority of the numerical
results of astrophysical interest was obtained in the spherical basis. However, an analysis
revealed serious objections against the use of the spherical basis: it does not give the correct
wavefunction in the singularity r = ∞ and it cannot account for the continuous spectrum
(Barcza 2000).

The aim of the present paper is to construct the analytic asymptotic solutions in the
singularities of diamagnetic Coulomb problem, to give insight into the complete set of
solutions and in a robust numerical procedure for bridging over the finite domain between
the singularities. Since the diamagnetic Coulomb problem is a prototype of non-relativistic
non-separable eigenvalue problems in quantum mechanics the algebraic machinery to support
a numerical solution will be interesting in itself.

We describe a solution using expansion of the wavefunction in terms of the angular
oblate spheroidal functions; we elucidate the analytic properties of ψ at the singular points
r = 0 and ∞, η = ±1 of the eigenvalue equation

− ∂

∂r
r2 ∂ψ

∂r
+ [ω2r4 − 2(E − ωn3)r

2 − 2Zr]ψ − ∂

∂η
(1 − η2)

∂ψ

∂η

+

(
n2

3

1 − η2
− ω2r4η2

)
ψ = 0 (2)

which was obtained from (1) by separating ϕ: � = (2π)−1/2 exp(in3ϕ)ψ(r, η), n3 is the
magnetic quantum number. An analytic solution to (2) is not known. Nevertheless, we shall
find the complete set of the asymptotic solutions in analytic form and a limited number of
numerical solutions will be given which demonstrate that the solutions from the spherical basis
represent only a subset of all solutions. Further benefits of the use of angular oblate spheroidal
functions are the rapid convergence (because products of these functions and appropriate
functions depending on r are nearly congruent with the exact wavefunctions) and a fairly good
representation of the wavefunction at small and large field strength as well. There is no need
to use another expansion, e.g. the Landau basis (Ruder et al 1994) or LaS basis (Barcza 1996,
Balla and Benkó́ 1996), to match two different expansions in the region of strong mixing
because the sum of a few terms approximates well the wavefunction at any field strength.
The use of the angular oblate spheroidal functions in the diamagnetic Coulomb problem was
suggested and solved in the adiabatic approximation by Starace and Webster (1979). The
coupling functions and a numerical solution of the non-adiabatic approximation were reported
in Barcza (1994).

Section 2 summarizes the use of angular oblate spheroidal functions: (2) will be
transformed to a system of infinitely coupled second order ordinary differential equations
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of the form which is suitable for asymptotic analysis and unified treating bound, autoionizing
stationary and the true continuum levels. In section 3 the complete set of asymptotic solutions
will be given in the singularities r = 0,∞. The sketch of the numerical procedure bridging
over the asymptotic regions and selected numerical results for even parity, n3 = 0 will be given
in section 4. The results are discussed briefly in section 5. Section 6 draws the conclusions.

2. The expansion of the wavefunction and the coupled second order ordinary
differential equations

The eigenfunctions of the η-dependent part in (2) are the angular oblate spheroidal functions
(Abramowitz and Stegun 1968)[

∂

∂η
(1 − η2)

∂

∂η
− n2

3

1 − η2
+ ν2η2 − µn(ν)

]
�n(ν, η) = 0, ν = ωr2 (3)

with node number n and eigenvalue µn(ν). At a fixed ν, n3 and parity the functions
�n, n = 0, 1, . . . form a complete system of orthogonal functions with normalization∫ 1
−1 dη�n(η, ν)�n′(η, ν) = δnn′ ; therefore, we assume

ψ = 1

r

∞∑
n=0

yn(r)�n(r, η). (4)

The use of �n provides for regular behaviour of ψ at η = ±1, i.e. the term ν2η2 is automatically
resolved in (2). Therefore, in the asymptotic analysis we have to deal with the singularities
r = 0,∞ only. The norm of � can be expressed by the channel coefficients yn:

〈�,�〉 =
∫ 2π

0
dϕ

∫ 1

−1
dη

∫ ∞

0
dr r2�∗� =

∞∑
n=0

∫ ∞

0
dr y2

n(r) =
∞∑

n=0

〈yn〉. (5)

For bound levels 〈�,�〉 = 1, for continuum levels norm (5) is infinite. The channels with
infinite and finite 〈yn〉 will be called free and bound channels respectively. Either for bound
or continuum levels the boundary conditions are yn(0) = 0, limr→∞ r−1yn(r) = 0, and yn(r)

must be bounded for all channels.
Multiplication by �n′ and integration over η transforms (2) to the eigenvalue problem of

the coupled inhomogeneous second order ordinary differential equations

d2yn

dr2
+

[
2(E − ωn3) +

2Z

r
− ω2r2 +

µn(r)

r2
+ Ann

]
yn

+
∞∑

n′=0

′
[(

Ann′ − Bnn′

r

)
yn′ + Bnn′

dyn′

dr

]
= 0, n = 0, 1, . . . (6)

where
∑′ indicates that the term n′ = n must be omitted in the summation. The coupling

matrix elements are

Bnn′(r) = 2
∫ 1

−1
�n

∂�n′

∂r
dη, (7)

Ann′(r) =
∫ 1

−1
�n

∂2�n′

∂r2
dη +

1

r
Bnn′ , (8)

because of the normalization of �n Bnn′ = −Bn′n, Bnn = 0. For practical reasons the sum in
(4) must be truncated to N elements in numerical computations, i.e. n = 0, . . . , N − 1 in (6).
For bound states the truncation is warranted if the sum in (5) is convergent. The convergence
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can be investigated in the asymptotic domains r → 0, r → ∞ analytically or from a numerical
solution directly or by introducing a solution {yn}n=0,...,N−1 in (6) and numerical integration
to determine the errors yN, . . . ; this latter procedure can be applied for continuum levels as
well.

3. Asymptotic analysis in the singular points r = 0, ∞
Analytic solutions to (6) are not known. In a numerical solution the integrator formulae become
unstable at r → 0 because of the singularity in the potential, and the infinite length 0 � r � ∞
of the integration interval combined with a singularity of the potential poses serious problem as
well. The goal of the following asymptotic analysis is to give the asymptotic series expansions
in an analytic form by which the numerical integration can be reduced to a finite interval and
the relation of numerical solutions to the complete set of solutions can be discussed.

3.1. Equation (3) at r = 0,∞
By ν → 0 and ν → ∞ (3) is transformed to the differential equation of associated Legendre
and Laguerre polynomials, respectively. Using this feature its asymptotic analysis provided
asymptotic series expansions for �n, Ann′ , Bnn′ , µn at 0 � ν 	 1 and ν 
 1; the series in
terms of increasing or decreasing powers of ν were summarized and formulae were given for
computing them numerically at intermediate values of ν in Barcza (1994). It is an important
feature of these expansions that Ann′ , Bnn′ vanish at r = 0,∞ leading to the asymptotic
decoupling of equations (6): the asymptotic solutions are those of the adiabatic equations (i.e.∑′ = 0). For the eigenvalues

µ(r) = −l(l + 1) + O(r4), l = 2n + |n3| + p, r → 0, (9)

µn(r)

r2
− ω2r2 + Ann = −2ω(2n + |n3| + 1) + O(r−4), r → ∞, (10)

were found; p = 0, 1 for even and odd parities, respectively.
Owing to the use of the angular oblate spheroidal functions the singularity of the potential

in (6) is resolved by (10). This is a decisive advantage in comparison with the spherical
basis where asymptotic decoupling exists for r → 0 only: in spherical basis finitely coupled
equations of type (6) must be solved with Bnn′ ≡ 0, but Ann,Ann′ and the potential are ∝ r2

for all channels leading to divergent or unbounded expansion of the wavefunction at r → ∞
(Barcza 2000).

3.2. Equations (6) at 0 � r 	 1

At r → 0 equations (6) have hydrogen-like asymptotic solutions; one of the two linearly
independent solutions is bounded:

yn =
∞∑

m=0

c(l)
m rl+1+m, (11)

E and c
(l)
0 are their asymptotically free parameters, i.e. the boundary conditions

{yn(0)}n=0,...,N−1 are satisfied at their any finite value. One of c
(l)
0 is the normalization

factor. N parameters of (11), i.e. E(ω) and N − 1 coefficients c
(l)
0 (ω) determine uniquely

{yn(r)}n=0,...,N−1, 0 � r � ∞.
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The recursive formula for the first few coefficients c(l)
m shows that the coupling enters

successively from the neighbouring channels (Barcza 1994), not earlier than in c
(l)
2 , i.e. the

asymptotic solutions of the adiabatic and non-adiabatic approximations (
∑′ = 0 and �= 0,

respectively) are identical at least in c
(l)
0 rl+1, c

(l)
1 rl+2: equations (6) become finitely coupled

in a given power of r. A corollary is that all elements with 0 � n � N − 2 must be included
in a numerical computation with N elements.

Lemma [1]. The omission of a term n � N − 2 leads to unbounded ψ at r = 0.

Proof. The omission is equivalent to yn(r) ≡ 0 in (6) which takes the form for this channel

(An,n+1 − Bn,n+1/r)yn+1 + Bn,n+1y
′
n+1 + O(r2n+|n3|+p+4) = 0. (12)

From the asymptotic expansions of An,n+1, Bn,n+1 (Barcza 1994) it follows that

y ′
n+1 =

(
1

r
− An,n+1

Bn,n+1

)
yn+1 + · · · = − 3

2r
yn+1 + O(r) (13)

for any n admitting the solution yn+1 ∝ r−3/2 and leading to ψ ∝ r−5/2. �

Without proof we mention that expansion (4) is obviously convergent with (11) if
0 � r < 1,−1 � η � 1.

We denote by α
(m)
N (l1, . . . , lm) the asymptotic solution with m zero asymptotically free

parameters c
(l1)
0 = 0, . . . , c

(lm)
0 = 0 and N − m of non-zero c

(l)
0 in (11). The channel functions

yl1 , . . . , ylm vanish at r 	 1 more rapidly than those with c
(l)
0 �= 0, and asymptotic behaviour

of these channels is determined by the non-zero coefficients c
(l)
0 through

∑′
, i.e. the number

of the asymptotically free parameters for (6) is altogether 1 � N − m � N .

3.3. Equations (6) at r → ∞
In (6) the coefficient of any yn is −λ2

n + 2Z/r + O(r−4) (Barcza 1994) where

λ2
n = −2E + 2ω(2n + |n3| + 1 + n3). (14)

In adiabatic approximation equations (6) have hydrogen-like asymptotic behaviour with two
differences: the term −l(l + 1)/r2 is missing because of the breakdown of spherical symmetry
and the absorption threshold depends on n, it is at λn = 0. The adiabatic asymptotic solutions
are

yad
n (r) =




v(+)
nn (r) exp(λnr)r

−Z/λn + v(−)
nn (r) exp(−λnr)r

Z/λn if λ2
n > 0,

v(c,0)
nn (r) cos[(8Zr)1/2] + v(s,0)

nn (r) sin[(8Zr)1/2] if λn = 0,

v(s)
nn (r) sin

(
λ̄nr + Z

λ̄n
ln r

)
+ v(c)

nn (r) cos
(
λ̄nr + Z

λ̄n
ln r

)
if λ2

n < 0,

(15)

λ̄2
n = −λ2

n. The exponential or trigonometric functions resolved the irregular singularity
r = ∞ in the sense that for the functions v(...)

nn with any superscript there exists an asymptotic
expansion of the form

v(...)
nn = C

(nn,...)
0

[
1 + C

(nn,...)
1 r−1 + · · · ]. (16)

The asymptotically free parameters are E and the coefficients C
(...)
0 except for C

(nn+)
0 , one

of C
(...)
0 is the normalization factor. With expansions (16) (15) represents the two linearly

independent solutions to each row in (6) forming a non-orthogonal basis to expand any
asymptotic solution.
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In (6) the coupling mixes yad
n (r) and its derivative multiplied by a power series of r−1

starting with O(r−m),m � 1. If E < ω(2n∗ + |n3| + n3 + 1), the general asymptotic solution
is

yn(r) =
n∗−1∑
m=0

[
v(s)

nm(r) sin

(
λ̄mr +

Z

λ̄m

ln r

)
+ v(c)

nm(r) cos

(
λ̄mr +

Z

λ̄m

ln r

)]

+
∞∑

m=n∗

[
v(−)

nm (r)rZ/λme−λmr + v(+)
nm(r)r−Z/λmeλmr

]
(17)

where n∗ = 0, 1, . . . is the serial number of the continuum for which (17) applies. The
asymptotically free parameters are those of (15). Bounded will be (17) if C

(nn+)
0 (E) = 0 for all

channels n = n∗, . . . , N−1 involved in the expansion. We denote by β
(n∗)
N (m1, . . . , mn∗−1) the

asymptotic solutions (17) where m1, . . . , mn∗−1 indicates the serial number m of the channel(s)
with exponential vanishing, i.e. for which C

(mmc)
0 = C

(mms)
0 = 0.

If e.g. n∗ = 0 bound levels exist with E < ω(|n3| + n3 + 1) exclusively. The first
absorption threshold E = ω is a multiple one since it belongs to all values n3 � 0.
If n∗ = 1 ‘monochromatic’ continuum levels exist, this is the first continuum with
ω(|n3| + n3 + 1) � E < ω(|n3| + n3 + 3), etc. Nevertheless, C

(00s)
0 = C

(00c)
0 = 0 allows

one to convert the free channel n = 0 to a bound one by v
(s)
00 (r) = v

(c)
00 (r) = 0 and

y0 → v
(−)
01 (r) exp(−λ1r)r

(Z/λ1) �≡ 0 where v
(−)
01 = −λ1C

(11,−)
0 B

(1)
01 r−1 + O(r−2), B

(1)
01 is

the first non-vanishing coefficient in the expansion of Bnn′ . Norm (5) of a level of this type
will be finite. This is a non-trivial autoionizing stationary level in the first continuum. (An
autoionizing level will be called trivial if n3 > 0 and its energy eigenvalue lies above the
first threshold: E > ω.) The existence of non-trivial autoionizing levels is suggested by our
asymptotic considerations; they can be found, if they exist, by numerical integration only.

The practical use of (17) is limited by the lack of a sufficient number of terms in expansion
(16); however, it was possible to sort out the solutions with different vanishing at r → ∞ and
to determine the number of the asymptotically free parameters of the bounded solutions of (6).

At an eigenvalue E of a bound level the vanishing ∝ exp(−λn∗r)rZ/λn∗ will dominate in
all channel functions (17) at a sufficiently large r because λn∗ < λn∗+1 < λn∗+2 < · · ·. In a
channel m the asymptotic behaviour is ∝ exp(−λn∗r)r(Z/λn∗ )−|m−n∗| ensuring the convergence
of norm (5).

For free channels the exponential functions vanish at r → ∞ and the trigonometric
function(s) divided by a power m � 0 of r will dominate the asymptotic behaviour of yn(r) at
any E.

4. Numerical solution of the truncated system (6)

Equations (6), 0 � n � N − 1, were integrated simultaneously to a fixed value of the
asymptotically free parameters by a modified Numerov procedure adapted to the presence
of Bnn′dyn′/dr in

∑′ (Barcza 1994). To start the numerical integration from 0 < r0 	 1
outwards and from rs 
 1 inwards the asymptotic series of the previous section were used.
The step size h was varied in order to minimize the number of the necessary steps, 10−6

relative accuracy was prescribed for any step; this value was consistent with the accuracy
10−7 of Ann′ , Bnn′ , µn. A shooting method was used to determine the asymptotically free
parameters: at the mesh points rm and at rm − h 1 � n � 2N equations of type

δyn(rm) = ∣∣1 − y(outward)
n (rm)

/
y(inward)

n (rm)
∣∣ � 10−6, (18)
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were satisfied. The computations were repeated without meshing, as a function of the
asymptotically free parameters {yn(rs)}n=0,...,N−1 = 0 was searched by a vectorized Newton
procedure and rs was increased until the convergence of E. The same results were obtained.
The only noteworthy peculiarity is that approaching the first absorption threshold E = ω the
loss of digits became more and more severe, and they were the same in the inward-outward
or outward-only integration enabling the numerical determination E(ω) for the lowest six
levels at a computational accuracy 10−17. Increasing the accuracy to 10−34 shifted the limits
to higher values of E and ω, but, principal improvement has not been found: the numerical
instability does not originate from the noise of Ann′ , Bnn′ , µn (being at level 10−7) but the digit
loss seems to be an inherent and not fully understood feature of equations (6) in non-adiabatic
computations. In the adiabatic approximation the instability was found to be much much
smaller; adiabatic eigenvalues could be computed for the lowest 50–60 levels without the
failure of the shooting method with the Numerov integrator formula.

To demonstrate the usefulness of our previous considerations some eigenvalues and the
values of the asymptotically free parameters belonging to them will be reported for bound
levels in subspace n3 = 0, p = 0. This subspace is especially interesting because in (6)
ωn3 = 0 (only quadratic Zeeman effect is present) and l = 0 are possible, meaning that
y0 �= 0 on the z axis and, if it exists, only non-trivial autoionizing levels exist in this subspace.

Two methods were found for the numerical solutions.

4.1. Solution by simultaneous integration of N equations

A simultaneous integration of equations (6), 0 � n � N − 1 and solution of 2N relations of
type (18) in outward-inward or N equations {yn(rs)}n=0,...,N−1 = 0 in outward-only integration
gave eigenvalues E(ω) < ω in perfect agreement (accuracy 10−6) with those obtained from
the spherical basis (Ruder et al 1994). All solutions were found to be of type β

(0)
N and

α
(0)
N except for some discrete points on the E(ω) curves of type, e.g. α

(1)
2 (0) was found at

E = 0.000 2598, ω = 0.042 8052, α(1)
2 (2) at E = 0.130 72, ω = 0.167 14, etc, at these values

of ω the sign of c
(0)
0

/
c
(2)
0 changed. In general, solutions α(m),m > 0 were unbounded at

r → ∞.
For comparison the analogue equations to (6) from the spherical basis (i.e. those of Ruder

et al (1994)) were integrated by the same method. To the same accuracy 10−6 in E the
number of the necessary channels was larger by a factor ≈ 2 in comparison with using �n.
The numerical instability from the digit loss appeared more severely, already at lower E, and
the convergence problems (Barcza 2000) manifested themselves when E(ω) approached the
ionization limit ω.

4.2. Iterative solutions

Each row of (6) is a linear, inhomogeneous second order ordinary differential equation offering
the possibility of an iterative solution. First a channel must be solved in the adiabatic
approximation and in the next steps the channel functions of the previous step must be
used in

∑′
, i.e. inhomogeneous equations must be integrated. For the sake of simplicity all

computations were outward-only. We have one free parameter for each channel enabling us
to find yn(rs) = 0. The accuracy 10−6 of E was reached by 2–5 iterative steps.

Two different iterative solutions were found.

4.2.1. First we choose the dominant channel having the largest 〈ynd〉 in (5) (e.g. nd = 0
for the ground state) and we solve ynd(rs, E) = 0. We introduce ynd(r, E) in the next
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Table 1. The splitting of the ground state.

From section 4.1 From section 4.2.2

ω −E 〈y0〉 106〈y1〉 −E 〈y0〉 106〈y1〉 C(1,∞)

0.01 0.509 899 0.999 999 0.085 0.509 896 0.999 999 1.2 1.000 01
0.02 0.519 600 0.999 999 0.73 0.519 541 0.999 992 7.9 1.0003
0.03 0.529 103 0.999 997 2.8 0.528 818 0.999 981 19 1.0006
0.05 0.547 526 0.999 983 17 0.545 794 0.999 959 41 1.0017

adjacent channel n1 and solve yn1

(
rs, E, c

(2n1+|n3|+p)

0

) = 0 by varying c
(2n1+|n3|+p)

0 . We introduce

yn1

(
r, E, c

(2n1+|n3|+p)

0

)
in

∑′ of channel nd and solve now the inhomogeneous equation
ynd(rs, E, yn1) = 0, etc. The procedure can be extended, of course, to more adjacent channels.

This procedure confirmed the results reported in section 4.1.

4.2.2. In addition to the hitherto known spectrum the following procedure resulted in new
eigenvalues.

∗ By the shooting method with simultaneous integration we determine the eigenvalue E(i),
the coefficients c

(l)
0 , the channel functions

{
y(i)

n (E(i), r)
}

n=0,...,N−2, i = 0 is at the first
step.

∗ We introduce the solution
{
y(i)

n (E(i), r)
}

n=0,...,N−2 in equation (6) for channel n =
N − 1 and integrate it: at r → ∞ the result will be unbounded: y

(i)
N−1(r, E

(i)) ∝
exp(λN−1r)r

−Z/λN−1 because the eigenvalue E(i) of the equations n � N − 2 is not an
eigenvalue of the equation n = N − 1. We integrate the adiabatic equation n = N − 1
(i.e.

∑′ = 0), because of the asymptotic decoupling its asymptotic behaviour is the
same: y

ad,(i)
N−1 (r, E(i)) ∝ exp(λN−1r)r

−Z/λN−1 , i.e. C(N−1,N−1,+)(E) �= 0 in (15). The ratio

y
(i)
N−1(r, E

(i))
/
y

ad,(i)
N−1 (r, E(i)) → C(N−1,∞) was found in the computations, C(N−1,∞) is a

constant, differing slightly from unity. C(N−1,∞) �= 1 means that these solutions are of
type α

(0)
N at r → 0 because c

(2N−2+|n3|+p)

0 �= 0.

∗ By y
(i)
N−1(r, E

(i)) − C(N−1,∞)y
ad,(i)
N−1 (r, E(i)) = y

part,(i+1)

N−1 (r, E(i)) we find a bounded
particular solution to channel n = N − 1 with vanishing ∝ exp(−λN−1r)r

Z/λN−1 .
We implement equations (6) by this channel function y

part,(i+1)

N−1 (r, E(i)) and repeat the
procedure from [*] with i = i + 1.

If
∣∣ypart,(i+1)

N−1 (r, E(i))−y
part,(i)
N−1 (r, E(i−1))

∣∣ → 0 for 0 � r � rs and E(0), E(1), . . . is a convergent
series the limit of E(i) is an eigenvalue of equations (6) truncated to N elements, channel
n = N − 1 vanishes with r → ∞ in the same manner as

{
y(i)

n (E(i), r)
}

n=0,...,N−2. Solutions
of this type have been found, at present the simplest ones, describing the splitting of the
ground state. The results originate from N = 2 approximation, the inclusion channel n = 2
modifies the values in table 1 below 10−8. Details are reported in table 1 and figure 1,
for comparison the data of the ground state are given from simultaneous integration with
N = 2.

In table 1 the limit ω = 0.05 followed from losing the significant digits in
y

part,(i+1)

N−1 (r, E(i)) since the difference ∝ exp(−λN−1r)r
Z/λN−1 could be computed from the

unbounded non-adiabatic and adiabatic solutions y
(i)
N−1(r, E

(i)), C(N−1,∞)y
ad,(i)
N−1 (r, E(i)), both

∝ exp(λN−1r)r
−Z/λN−1 which were known to accuracy 10−6.

Wavefunctions and eigenvalues of this type exist only in quasi-separable problems like
(2) which can be converted to coupled inhomogeneous equations (6).
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Figure 1. Channel coefficients at ω = 0.03, N = 2. Upper panels: from simultaneous integration,
section 4.1. Lower panels: from iterative solution, section 4.2.2. Lower right panel: dotted:

y
part,(1)

1 (r, E(0)), dashed: y
part,(4)

1 (r, E(3)), line: y
part,(5)

1 (r, E(4)). Lower left panel: because of the

small difference in y
(i)
0 (r, E(i)), i = 0, 3, 4 the lines coincide within the line width.

5. Discussion

The results reported in sections 4.1 and 4.2.1 are modest from numerical point of view because
the computed eigenvalues could only confirm those from the spherical basis while equations (6)
are more complicated than those from the spherical basis where Bnn′ ≡ 0, Ann′ = L(n, n′)r2.
The confirmatory numerical results mean that in the spherical basis the wavefunction is well
approximated in the domain of r and η which is influential for the energy eigenvalue.

The specific results from using the angular oblate spheroidal functions are the analytic
asymptotic expansions, enabling us

to resolve singularities
to prove a lemma concerning the completeness of the expansion in terms of the basis
functions
to construct the complete set of asymptotic wavefunctions
to determine their free parameters which have discrete values at an ω

to find hitherto unknown low-lying stationary levels
to handle the continuous spectrum as well
to reduce the numerical integration to a finite interval.

This basis fits to the problem better than any other basis used in previous studies and
promises a qualitative leap in treating the absorption thresholds, continuum which were
treated in adiabatic approximation only (e.g. Ruder et al (1994), Potekhin and Pavlov (1994)).
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In the adiabatic approximation we have an one threshold with one continuum; in the non-
adiabatic approximation we have an infinite number of thresholds and continua separated by
the Landau spacing 2ω. This is a principal difference.

The main new results are a corollary from the asymptotic decoupling at r = 0 and ∞; this
is a feature of the expansion in terms of angular oblate functions.

6. Conclusions

The Schrödinger equation of the diamagnetic Coulomb problem has been analysed which is a
prototype for the non-separable quantum mechanical eigenvalue problems. For expanding the
eigenfunctions the angular oblate spheroidal functions were used as basis functions. By this
expansion both singularities of the problem could be resolved and wavefunctions were found
which are correct from an analytical point of view.

By algebra and analysis asymptotic series have been given in terms of r, 0 � r 	 1
and r−1, r 
 1, respectively. The convergence radius of the series is small; however, both
series could be used to start the numerical integration for 0 � r � ∞ in the frame of
a shooting method. For the complete set of solutions the number of the free parameters
has been determined. The combination of analysis and algebraic machinery with numerical
integration has provided much better insight into the structure of the bound and continuous
spectrum; furthermore, in addition to the confirmation of the results from previous studies
hitherto unknown low-lying levels have been discovered. This finding indicates that in the
diamagnetic Coulomb problem a wealth of stationary levels is yet to be discovered, perhaps
in the continuum as well, which have not been found by the simplest, common numerical
procedures without comprehensive analysis.
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